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Observer-based approach for controlling chaotic systems

Teh-Lu Liao*
Department of Engineering Science, National Cheng Kung University, Tainan, 701 Taiwan, Republic of China

~Received 15 August 1997!

This paper presents a nonlinear state observer for a class of nonlinear systems which have an output
dependent nonlinearity. By the observer design scheme proposed herein, an observer-based linear state feed-
back control approach is then derived to stabilize this class of systems. Analysis results indicate that both error
dynamics and the subsequent closed-loop system can be made exponentially stable. The control strategy is also
applied to two well-known chaotic systems: Ro¨ssler chaos and Lorenz chaos. Numerical simulations demon-
strate the effectiveness of the proposed scheme.@S1063-651X~98!13802-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Several chaotic systems have been developed and
oughly analyzed in recent decades. A chaotic system
nonlinear deterministic system having a complex and unp
dictable behavior. The sensitive dependence on initial co
tion and on the system parameter variation is a promin
feature of chaotic behavior. The controlling chaos probl
of chaotic systems has received increasing attention@1–16#.
In their pioneering work involving the controlling chaos, O
Grebogi, and Yorke@1# proposed a method~OGY method!
which stabilizes unstable periodic orbits~UPO! embedded
within a chaotic attractor by making small parameter pert
bations. Adhering to the OGY method, several extensi
have been successfully applied to many physical system
various purposes@2,3#. Pyragas@4# proposed an alternativ
means of feedback stabilizing UPO by using a delayed s
controlling feedback, in which a continuous feedback te
contains a delay variable and the delay corresponds to
period of UPO. Moreover, the delayed self-controllin
method@4# and time delay coordinates strategy@5–7# can not
only be applied without knowinga priori the dynamical
equations but also be used for some rapid systems.

In addition, several methods known from standard con
engineering have also been successfully applied to cha
systems, e.g., entrainment and migration control@8,9#, con-
ventional engineering control@10–12#, advanced nonlinea
linearization technique@13#, Lyapunov-based method@14#,
variable structure control method@15#, and adaptive contro
theory @16#. The most common feature of these differe
control strategies is that the internal state variables are
sumed to be available to construct the control forces; in
dition, the controller structure is extremely complicate
However, under many circumstances, limited state inform
tion may be available and only the process output can
measured. Under such circumstances, a parallel state re
struction, e.g., by means of a Kalman filter or a Luenberg
like type of observer, must be used to implement the con
laws.

Recently, synchronization of chaotic systems has b
linked to the concept of an observer in a control theoret
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perspective@17,18#. The synchronization problem consists
forcing the transmitter system and receiver system to os
late in a synchronous manner. The receiver system is usu
a duplicate of the transmitter system, thereby accounting
why the receiver can be considered as an observer ab
synchronously detect the state of the transmitter one. He
for an observer design similar to the synchronization des
knowledge of explicit dynamics of the controlled comple
nonlinear systems is obviously a prerequisite.
The observer design of a general nonlinear system is a d
cult problem in control and estimation theory. A variety
methods have been developed in recent years for some
linear systems. Four approaches are generally available
constructing nonlinear observers@19,20#. However, the ob-
server error linearization and coordinate transformation
deemed necessary to construct the state observer.
In this paper, we address the problem of designing state
servers for a class of nonlinear systems. The class of sys
determined is allowed to have output dependent nonlinea
By using the Bellman-Gronwall inequality lemma@21#, un-
der some structural assumptions in the nonlinearity, the
ponential stability of the open-loop estimate error dynam
can be inferred. By such an observer scheme, the linear f
back control law based on such estimates is derived to
bilize this class of systems. By again using the Bellma
Gronwall inequality, in the case of the observer-bas
control law, the exponential stability of the subseque
closed-loop system can be inferred. Moreover, the propo
control scheme is applied to control two well-known chao
systems: Ro¨ssler chaos and Lorenz chaos. Numerical sim
lations demonstrate the effectiveness of the proposed co
strategy.

II. OBSERVER-BASED LINEAR CONTROLLER DESIGN
FOR NONLINEAR SYSTEMS

A. Problem definition

Consider a class of single-input single-output nonline
systems described by the following form:

ẋ5Ax1 f ~x,y!1B~u1d!,

y5CTx, ~1!

whereu, yPR denote the control input and system outp
respectively,xPRn represents the state vector,dPR is the
1604 © 1998 The American Physical Society
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57 1605OBSERVER-BASED APPROACH FOR CONTROLLING . . .
dc bias of the controlled system, andA, B, and C denote
constant matrices with appropriate dimensions, and ( )T de-
notes the vector transpose. Furthermore, (A,B) represents a
stabilizable pair and (CT,A) is a detectable pair.f denotes a
real analytic vector field onRn with f (0,y)50. Moreover,
f (x,y) satisfies the Lipschitz condition inx, i.e., there
exists g.0 such that i f (x1 ,y)2 f (x2 ,y)i<gix12x2i
for x1 , x2PRn, and for all yPR, where i~•!i denotes the
appropriate norm of vector~•! and g is the Lipschitz con-
stant.

The class of nonlinear systems includes a wide variety
chaotic systems such as Ro¨ssler chaos and Lorenz chaos.

For stabilization purposes, a state feedback control
is designed herein to asymptotically stabilize the syst
~1! to the origin. In practice, this control law is of th
form

u5KTx2d, ~2!

where KPRn is chosen such thatA1BKT is an exponen-
tially stable matrix, which is possible since the pair (A,B)
can be stabilized. Therefore the control law in Eq.~2! asymp-
totically stabilizes the linear part of Eq.~1!. If the state vari-
ables are unavailable, the conventional practice is to c
struct a state observer. Throughout this paper, an obse
based linear state feedback control scheme is derived
that the subsequent closed-loop system is exponent
stable. Some basic definitions and results used for deve
ing the state feedback control scheme are summarized in
Appendix.

B. Nonlinear state observer

For estimating the statex of Eq. ~1!, we use a nonlinea
state observer of the form

ẋ̂5Ax̂1 f ~ x̂,y!1B~u1d!1L~y2 ŷ!,

ŷ5CTx̂, ~3!

with x̂ denoting the dynamic estimate of the statex and
f ( x̂,y) representing the estimated vector off (x,y) based on
the estimated statex̂. The constant vectorLPRn is chosen
such thatA2LCT is an exponentially stable matrix, which
also possible since the pair (CT,A) is detectable. By allow-
ing the state errorê5x2 x̂, the subsequent error dynamic
can be written as follows:

ė̂5 ẋ2 ẋ̂

5Ax1 f ~x,y!1B~u1d!2Ax̂2 f ~ x̂,y!2B~u1d!

2L~CTx2CTx̂!5~A2LCT!ê1 f ~x,y!2 f ~ x̂,y!.

~4!

Given an initial conditionê(0), the solution of the error
dynamics~4! is as follows:

ê~ t !5exp@~A2LCT!t#ê~0!1E
0

t

exp@~A2LCT!~ t2t!#

3@ f „x~t!,y~t!…2 f „x̂~t!,y~t!…#dt. ~5!
f

w

n-
er-
ch
lly
p-
he

BecauseA2LCT is an exponentially stable matrix, positiv
constants m1 and a1 exist such that iexp@(A2LCT)t#i
<m1 exp(2a1t) for all t>0. Therefore the inequality

i ê~ t !i<m1i ê~0!iexp~2a1t !1m1E
0

t

exp@2a1~ t2t!#

3i@ f „x~t!,y~t!…2 f „x̂~t!,y~t!…#idt

<m1i ê~0!iexp~2a1t !1m1g exp~2a1t !

3E
0

t

exp~a1t!i ê~t!idt ~6!

is satisfied for allt>0. Multiplying both sides of Eq.~6! by
exp(a1t) and definingm̄15max$m1iê(0)i,m1g%, as well as ap-
plying the Bellman-Gronwall lemma yield

i ê~ t !i<m̄1 exp@2~a12m̄1!t#, ~7!

which implies that the error dynamics exponentially co
verge to zero provided thata1.m̄1 . Consequently, a suffi-
cient condition is provided for the exponential convergen
of the state error dynamics in the case of the Lipschitz c
dition in nonlinearity and a proper choice of the observ
gain L.

C. Observer-based control law

In this subsection, we consider the case in which the c
trol law ~2! is implemented by observer state estimates:

u5KTx̂2d, ~8!

where measured state variablesx are replaced by the corre
sponding estimatesx̂, as supplied by the proposed observ
given in Eq.~3!. The extended system describing the close
loop 2n-dimensional system constituted by Eqs.~1!, ~3!, and
~8! can be represented as follows:

ẋ5~A1BKT!x2BKTê1 f ~x,y!,

ė̂5~A2LCT!ê1 f ~x,y!2 f ~x2ê,y!. ~9!

The separation theorem@22# for the linear systems reveal
that the eigenvalues of the linear part of system~9! are the
union of the eigenvalues ofA1BKT andA2LCT.

By defining the augmented matrixAc as

Ac5FA1BKT 2BKT

0 A2LCTG
we can obtain the solution of the closed-loop system~9! with
the given initial conditionsx(0) andê(0) as follows:

Fx~ t !
ê~ t !G5exp~Act !Fx~0!

ê~0!G1E
0

t

exp@Ac~ t2t!#

3F f „x~t!,y~t!…

f „x~t!,y~t!…2 f „x~t!2ê~t!,y~t!…Gdt.

~10!
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BecauseA1BKT andA2LCT are exponentially stable ma
trices, positive constantsm anda exist such thatiexp(Act)i
<m exp(2a t) for all t>0. Therefore the inequality

Ix~ t !
ê~ t !I<mIx~0!

ê~0!Iexp~2at !1mE
0

t

exp@2a~ t2t!#

3I f „x~t!,y~t!…

f „x~t!,y~t!…2 f „x~t!2ê~t!,y~t!…Idt

<mIx~0!

ê~0!Iexp~2at !1mE
0

t

exp@2a~ t2t!#

3I f „x~t!,y~t!…2 f „0,y~t!…

f „x~t!,y~t!…2 f „x~t!2ê~t!,y~t!…Idt

<mIx~0!

ê~0!Iexp~2at !1mg exp~2at !E
0

t

exp~at!

3Ix~t!

ê~t!Idt ~11!

is satisfied for allt>0. Multiplying both sides by exp(a t)
and definingm̄5max$mi„ê(0),x(0)…Ti ,mg%, as well as ap-
plying the Bellman-Gronwall lemma, yield

Ix~ t !
ê~ t !I<m̄ exp@2~a2m̄!t#. ~12!

The above equation implies that ifa.m̄, then„x(t),ê(t)…T

exponentially converges to origin with the exponential r
a2m̄ and the closed-loop system is exponentially stable
well. Consequently, a sufficient condition is provided for t
exponential convergence of the subsequent closed-loop
tem in the case of the Lipschitz condition in nonlinearity a
a proper choice of both the observer gainL and the feedback
gain K.

It can be easily verified that a class of chaotic syste
including the driven Ro¨ssler chaos and driven Lorenz chao
belong to the class nonlinear systems mentioned above
the following section, the observer-based feedback con
approach proposed herein is applied to control this clas
chaotic systems.

III. APPLICATION TO CHAOTIC SYSTEMS

A. Rössler system with control

This system is described by the following differenti
equations:

ẋ152x22x3 , ẋ25x11ax2 , ẋ35c1x3~x12b!1u,
~13!

wherea, b, andc denote positive parameters. By assumi
that u[0 in the above equation, the Ro¨ssler system is ob
tained. This system has two equilibrium points:

xe
65~xe1

6 ,xe2
6 ,xe3

6 !T

5S a
b6Ab224ac

2a
,2

b6Ab224ac

2a
,

b6Ab224ac

2a D T

,

~14!
e
s

ys-

s,
,
In
ol
of

where b224ac.0. These parameters are selected in t
study asa50.2,b55.7,c50.2. By defining the state vecto
xT5@x1 x2 x3# and the system outputy5x1 , the system
~13! can be represented by using Eq.~1! as follows:

ẋ5F 0 21 21

1 0.2 0

0 0 25.7
G x1F 0

0
x1x3

G1F 0
0
1
G ~u10.2!

[Ax1 f ~x,y!1B~u1d!,

y5@1 0 0#x[CTx, ~15!

with f (0,y)50, and the system~15! has a bounded, globally
attracting set. Therefore state trajectoriesx(t), y(t) are al-
ways bounded and continuously differentiable. Con
quently, f (x3 ,y) satisfies the Lipschitz condition for
bounded outputy. The Lipschitz constant can be selected
g5supt>0y(t). Also, the linear part of the system describ
in Eq. ~15! is verified in the Appendix as being controllab
and observable and, moreover, being stabilizable and de
able.

While considering the state observer of Eq.~3!, a nonlin-
ear observer for the system~15! is given as follows:

ẋ̂5F 0 21 21

1 0.2 0

0 0 25.7
G x̂1F 0

0
x̂3y

G1F 0
0
1
G ~u10.2!1L~y2 ŷ!

[Ax̂1 f ~ x̂,y!1B~u1d!1L~y2 ŷ!,

ŷ5@1 0 0# x̂ ~16!

and the gain vectorL is chosen asL5@ l 1 l 2 l 3#T

5@0.8 20.16 20.012#T such thatA2LCT is an asymp-
totically stable matrix. By regulating the state trajectory
system~15! to the origin, the observer-based state feedb
control law ~8! can be expressed as

u5KTx̂2d5KTx̂20.2 ~17!

and the state feedback gain isK5@k1 k2 k3#T

5@3.0 20.2 0.6#T. Figure 1 displays the numerical simu
lation results of the closed-loop system. The control w
switched on at t50 sec with the initial states„x1(0)
50.7, x2(0)50.4, x3(0)520.8… and the initial estimated
states„x̂1(0)50.4, x̂2(0)520.1, x̂3(0)51.2….

B. Lorenz system with control

This system is described by the differential equations

ẋ152sx11sx2 , ẋ25rx12x22x1x31u,

ẋ35x1x22bx3 , ~18!

wheres, r , andb denote positive parameters. By assumi
that u[0 in the above equation, we obtain the Lorenz s
tem. Forr .1, this system has three equilibrium points:
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FIG. 1. System responses of the controlled Ro¨ssler chaos:~a!
the actual statex1 and the estimated statex̂1 ; ~b! the actual statex2

and the estimated statex̂2 ; ~c! the actual statex3 and the estimated
statex̂3 ; ~d! the control inputu.
xe
65„6Ab~r 21!,6Ab~r 21!,r 21…, xe

05~0,0,0!.
~19!

These parameters are selected herein ass510, r 528,
b5 8

3 . Figure 2 depicts the chaos trajectory of the system
~18! with the parameters given as above andu[0. By defin-
ing the state vectorxT5@x1 x2 x3# and the system output
y5x1 , the system~18! can be represented by using Eq.~1!
as follows:

ẋ5F 210 10 0

28 21 0

0 0 2 8
3

G x1F 0
2x1x3

x1x2

G1F 0
1
0
Gu

[Ax1 f ~x,y!1Bu,

y5@1 0 0#x, ~20!

with f (0,y)50, and the system~20! has a bounded, globally
attracting set. Therefore state trajectoriesx(t), y(t) are al-
ways bounded and continuously differentiable. Conse
quently, f (x3 ,y) satisfies the Lipschitz condition for a
bounded outputy. The Lipschitz constant can be selected a
g5supt>0y(t). Also pointed out in the Appendix, the linear
part of the system~20! is easily found to be both stabilizable
and detectable.

By considering the state observer of Eq.~2!, we obtain

ẋ̂5F 210 10 0

28 21 0

0 0 2 8
3

G x̂1F 0
2yx̂3

yx̂2

G1F 0
1
0
Gu1L~y2 ŷ!

[Ax̂1 f ~ x̂,y!1B~u1d!1L~y2 ŷ!,

ŷ5@1 0 0# x̂, ~21!

by selecting the gain vectorL as L5@ l 1 l 2 l 3#T5
@210 30 0#T such that A2LCT is an exponentially
stable matrix. By stabilizing the state trajectory of the system
~20! to the equilibrium pointxe

0, the observer-based state
feedback control~8! is given by

FIG. 2. Two-dimensional image of Lorenz chaos trajectory.
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1608 57TEH-LU LIAO
u5KT~ x̂2xe
0!, ~22!

where the state feedback gain isK5@k1 k2 k3#T5
@215.5 213.5 0#T. Figure 3 summarizes the numeric
simulation results of the closed-loop system with the init
states„x1(0)50.3,x2(0)50.4,x3(0)520.8… and the initial
estimated states„x̂1(0)50.1, x̂2(0)520.1, x̂3(0)520.2….

Simulation results of these chaotic systems demonst
that ~i! the estimated state converges exponentially to
actual state and~ii ! an observer-based linear state feedba
control scheme can adequately control the chaos proble

IV. CONCLUSIONS

This work presents a nonlinear state observer for a c
of nonlinear systems with some structural assumptions.
observer-based linear state feedback control approach is
derived to stabilize this class of nonlinear systems. The c
trol strategy is relatively simple and clearer than other eit
linear methods or nonlinear state feedback methods tha
quire full state information. Analysis results confirm the e
ponential stability of the closed-loop system. The cont
scheme is also successfully applied to the controlling ch
problem. Moreover, numerical simulation results demo
strate the effectiveness of the proposed control scheme.

APPENDIX

For developing the observer-based controller of a clas
nonlinear systems with its application to the problem of co
trolling chaos, some basic definitions and results of lin
time-invariant control systems are briefly reviewed. The m
terial is adopted from control system theory@21–23#. A
reader who is unfamiliar with the results might find this i
formation helpful.

Consider the following linear time-invariant system:

ẋ5Ax1Bu, ~A1a!

y5CTx, ~A1b!

wherexPRn represents then-dimensional state vector, an
u,yPR denote the control input and system output, resp
tively. In addition, A, B, and C denote constant matrice
with appropriate dimensions.

With a certain control inputu[ū, there exists a unique
solution ~or trajectory! of Eq. ~A1a!,

x~ t !5x„t;0,x~0!,ū…, ~A2!

which satisfies Eq.~A1a! under the initial conditions

x„0; 0,x~0!,ū…5x~0!. ~A3!

In many engineering applications, a need arises not o
to drive the state trajectory to the equilibrium pointx50
asymptotically but also to estimate how rapidly the traject
approaches 0. This concept can be viewed as expone
stability of dynamical systems.

Definition 1 (exponential stability).The equilibrium point
x50 of Eq.~A1a! is exponentially stable with a convergen
ratea if there exist constantsm̄,a.0 such that
l
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FIG. 3. System responses of the controlled Lorenz chaos:~a!
the actual statex1 and the estimated statex̂1 ; ~b! the actual statex2

and the estimated statex̂2 ; ~c! the actual statex3 and the estimated
statex̂3 ; ~d! the control inputu.
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ix~ t !i<m̄ix~0!iexp~2at !, ;t>0. ~A4!

The problem of controllability is related to the possibili
of driving the state trajectoryx(t) of the dynamical system
given by Eq.~A1a! by means of the control inputu(t) in a
finite interval of time.

Definition 2 (controllability). The system described b
Eq. ~A1! @or, in short, the pair (A,B)# is said to becom-
pletely controllable, if there exists a control inputu(•) that
can drive the system from any initial statex(0) to any de-
sired final statex(t f), t f,`.

As indicated previously@22,23#, the pair (A,B) is control-
lable if and only if the rank condition

rank@B AB ••• An21B#5n

is satisfied.
Relating u to the current state of the system~A1! in a

feedback form,u5KTx, KPRn is a column vector, Eq
~A1a! becomes

ẋ5~A1BKT!x. ~A5!

The task for control theory involves designing a vectorK
such that the fixed pointx50 is exponentially stable with a
convergence ratea. Related investigations have also co
firmed @22,23# that, if the pair (A,B) is controllable, then for
any given set of numbers Re(mi)<2a, i 51,. . .,n one can
always find a vectorK so that the matrixA1BKT has this
set of numbers as its eigenvalues, i.e., all eigenvalues oA
1BKT can be arbitrarily assigned to the open left-half co
plex plane or the matrixA1BKT is called an exponentially
stable matrix.

The concept of observability closely resembles that
controllability. More specifically, observability refers to th
possibility of determining the initial statex(0) by measuring
the inputu(t) and the outputy(t) over a finite interval of
time.

Definition 3 (observability).The system given by Eq
~A1! @or, in short, the pair (CT,A)# is said to becompletely
observable, if, for any initial statex(0), there exists a finite
time t such thatx(0) can be determined~uniquely! from
u(t) andy(t) for 0<t<t.

Previous investigations@22,23# have also confirmed tha
the pair (CT,A) is observable if and only if the rank cond
tion

rankF CT

CTA
A

CTAn21
G5n

is satisfied.
The following stabilizability condition is weaker tha

controllability.
Definition 4 (stabilizability).The system described by Eq

~A1! @or, in short, the pair (A,B)# is said to bestabilizableif
there exists a state feedback gainKPRn such that the closed
loop state equationẋ5(A1BKT)x is exponentially stable.

The following detectability condition is weaker than th
observability condition.

Definition 5 (detectable).The system given by Eq.~A1!
-

f

@or, in short, the pair (CT,A)# is said to bedetectableif there
exists an output injection gainLPRn such that the closed
loop state equationẋ5(A2LCT)x is exponentially stable.

Remark.A completely controllable pair can always b
stabilized. Nevertheless, the opposite is not true. Intuitive
stabilizability can be viewed as stability of uncontrollab
states. An equivalent interpretation of stabilizability is th
all uncontrollable modes are exponentially stable. Simila
an observable pair is also always detectable, and the
verse is not true. Intuitively, detectability can be viewed
stability of unobservable states. An equivalent interpretat
of detectability is that all unobservable modes are expon
tially stable ones.

Example 1.Consider a linear system described by E
~A1! with the following triplicate matrices:

A5F 0 21 21

1 0.2 0

0 0 25.7
G , B5F 0

0
1
G , CT5@1 0 0#.

Then it can easily be verified that rank@B AB A2B#53
and

rankF CT

CTA
CTA2

G53.

Therefore the pair (A,B) is both controllable and stabiliz-
able, and the pair (CT,A) is also bothobservableanddetect-
able.

Example 2.Consider a linear system described by E
~A1! with the following triplicate matrices:

A5F 210 10 0

28 21 0

0 0 28/3
G , B5F 0

1
0
G , CT5@1 0 0#.

Then it can easily be verified that rank@B AB A2B#52
and

rankF CT

CTA
CTA2

G52.

Moreover, all eigenvalues of the matrixA are
$222.8277, 11.8277,22.6677% and there exists only one
uncontrollable and unobservable mode$22.6677%, which is
stable. Hence the pair (A,B) is not controllablebut is stabi-
lizable, and the pair (CT,A) is not observablewhile it is
detectable.

The following lemma plays a prominent role in derivin
exponential stability of the closed loop in the observer-ba
control system.

Lemma 1.~Bellman-Gronwall inequality! @21#. Assume
that z(•):R1→R1 is a continuous function anda,b.0 are
given constants. Under these conditions, if

z~ t !<b1E
0

t

az~t!dt for all t>0, ~A6!

then

z~ t !<b exp~at ! for all t>0. ~A7!
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